首页> 外文OA文献 >Dantzig-Wolfe decomposition for solving multi-stage stochastic capacity-planning problems
【2h】

Dantzig-Wolfe decomposition for solving multi-stage stochastic capacity-planning problems

机译:Dantzig-Wolfe分解用于解决多阶段随机容量规划问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe a multi-stage, stochastic, mixed-integer-programming model for planning discrete capacity expansion of production facilities. A scenario tree represents uncertainty in the model; a general mixed-integer program defines the operational submodel at each scenario-tree node; and capacity-expansion decisions link the stages. We apply “variable splitting” to two model variants, and solve those variants using Dantzig-Wolfe decomposition. The Dantzig-Wolfemaster problem can have a much stronger linear-programming relaxation than is possible without variable splitting, over 700% stronger in one case. The master problem solves easily and tends to yield integer solutions, obviating the need for a full branch-and-price solution procedure. For each scenario-tree node, the decomposition defines a subproblem that may be viewed as a single-period, deterministic, capacity-planning problem. An effective solution procedure results as long as the subproblems solve efficiently, and the procedure incorporates a good “duals stabilization scheme.” We present computational results for a model to plan the capacity expansion of an electricity distribution network in New Zealand, given uncertain future demand.The largest problem we solve to optimality has 6 stages and 243 scenarios, and corresponds to adeterministic equivalent with a quarter of a million binary variables.
机译:我们描述了一个多阶段,随机,混合整数编程模型,用于规划生产设施的离散产能扩展。场景树表示模型中的不确定性;一个通用的混合整数程序定义每个场景树节点的操作子模型;能力扩展决策将各个阶段联系在一起。我们将“变量拆分”应用于两个模型变体,并使用Dantzig-Wolfe分解求解这些变体。 Dantzig-Wolfemaster问题比没有变量拆分的情况具有更强的线性编程松弛度,在一种情况下,线性松弛度要强700%以上。主要问题很容易解决,并且倾向于产生整数解,从而不需要完整的分支价格定价程序。对于每个方案树节点,分解定义了一个子问题,该子问题可以看作是单周期,确定性的容量规划问题。只要子问题得到有效解决,就产生了有效的解决程序,并且该程序结合了良好的“对偶稳定方案”。在未来需求不确定的情况下,我们为规划新西兰的配电网络容量扩展的模型提供了计算结果。我们解决最优性的最大问题有6个阶段和243种情况,对应于确定性当量,即四分之一百万个二进制变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号